THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH2050B Mathematical Analysis I (Fall 2016)
 Tutorial Questions for 6 Oct

1.

Theorem 1. (Ratio test)
Let $\left(x_{n}\right)$ be a sequence of positive real numbers. Suppose

$$
\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=L
$$

where L is a non-negative real number. Then we have:
(a) If $0 \leq L<1$, then $\lim _{n \rightarrow \infty} x_{n}=0$.
(b) If $L>1$, then $\left(x_{n}\right)$ is divergent.
(c) If $L=1$, this method is inconclusive.
2. (Comparison of Order of Growth)

Using Ratio test, show that we have the following inequalities:

$$
n \ll n^{2} \ll 2^{n} \ll n!\ll n^{n}
$$

where, e.g. $2^{n} \ll n$! is read as

$$
\lim _{n \rightarrow \infty} \frac{2^{n}}{n!}=0
$$

Intuitively, $a_{n} \ll b_{n}$ means that a_{n} is negligible compared to b_{n} eventually as n grows to infinity.
3. (Average of a Sequence)

Definition 1. Let $\left(a_{n}\right)$ be any sequence of real numbers. We define its partial sum

$$
S_{n}:=\sum_{k=1}^{n} a_{k}
$$

and then the average of it by

$$
A_{n}:=\frac{S_{n}}{n}
$$

(a) Show that if $\lim _{n \rightarrow \infty} a_{n}=l \in \mathbb{R}$, then

$$
\lim _{n \rightarrow \infty} A_{n}=l
$$

(b) (Optional) We define the Cesàro sum of a sequence $\left(a_{n}\right)$ by

$$
\sigma_{n}:=\frac{S_{1}+S_{2}+\cdots+S_{n}}{n},
$$

where S_{n} is the partial sum of a_{n}. (Hence the Cesàro sum is the average of the partial sums)
Show that as a corollary, σ_{n} converges to $l \in \mathbb{R}$ if

$$
\sum_{k=1}^{\infty} a_{k}:=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=l .
$$

(c) Show that the converse of (a) is not true by constructing a real sequence a_{n} whose average converges to a finite limit $l \in \mathbb{R}$ but a_{n} itself diverges.
(d) (Optional) Show that the converse of (b) is not true by constructing a real sequence a_{n} whose Cesàro sum converges to a finite limit $l \in \mathbb{R}$ but its partial sum S_{n} diverges.

